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Abstract 
The way in which Niggli characters are introduced 
nowadays is not very satisfying. In this paper a more 
exact abstract method based on topological concepts 
is proposed. Any lattice can be represented by a point 
in Es, its Niggli point. Then to any system of lattices 
there corresponds a set of points in E5 called the 
image of this system. A Bravais type is taken formally 
as a system of all lattices of this type. The same can 
be done with the Niggli characters. The main result 
is: The image of a Niggli character is a component 
(i.e. a maximum connected subset) of the image of 
that Bravais type which contains the character. The 
image of any Niggli character is a convex set. This 
enables a simple physical (dynamical) interpretation. 
Since the decomposition of a set in E5 into com- 
ponents is unique it can be used conversely for 
definition of the Niggli characters. 

Introduction 

The Niggli lattice characters* (Niggli, 1928; Migheil, 
Santoro & Donnay, 1969; de Wolff, 1983) are used 
to introduce a finer division of lattices than the com- 
monly used Bravais types. It is not the only attempt 
that has been made. Most readers are acquainted with 
the method of Delaunay (1933) used in the old edi- 
tions of International Tables for X-ray Crystallography 
(1952) for determining the Bravais type of a lattice. 
The criterion here is the shape of the Voronoi domain. 
The table constructed by Delaunay distinguishes 24 
cases giving a division of lattices into 24 Sym- 

* Also called 'lattice characters' or 'Niggli characters' or simply 
'characters'. 

metriesorten. This is a subdivision of the Bravais types, 
the hR, tl, oI and ml lattices being further divided 
according to special relations between the parameters 
of their conventional cells. The Delaunay procedure 
is elegant though not very quick and has experienced 
a revival thanks to Burzlaff & Zimmermann (1985) 
who have written a computer program DELOS (Zim- 
mermann & Burzlaff, 1985) which is based on this 
procedure. 

From a quite different angle the problem has been 
studied by Schwarzenberger (1972). His approach is 
abstract and requires a considerable knowledge of 
topology. In principle (and in short), he works with 
the sets of all lattices, all primitive bases and all 
reduced bases making them (after some iden- 
tifications) topological spaces. This is done by means 
of a map from the general linear group. General 
considerations are carried out in n dimensions and 
detailed results gained for n = 1, 2, 3. They are illus- 
trated by instructive figures. In this classification, the 
tP, tl and oC lattices are further divided. 

The present International Tables for Crystallography 
(1987) use for determining the Bravais type a method 
suggested by Niggli (1928) which has its roots in the 
reduction theory of the positive-definite quadratic 
forms. It divides lattices into 44 classes called char- 
acters which can be described by special relations 
between the shortest vectors. Thus they are more 
freely related to the symmetry of the lattice, forming 
nevertheless a subdivision of the Bravais types. 

Each of the three mentioned classifications is based 
on different principles. Therefore, their convenience 
and applicability to various tasks are different. It is 
not the aim of this paper to compare their particular 
advantages and disadvantages and to study their 
intrinsic relationships. Here we are interested only in 
one of these classifications, the Niggli characters. 
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462 TOPOLOGICAL APPROACH TO THE NIGGLI LATTICE CHARACTERS 

They attracted our attention because of the disturbing 
fact that until now they have not been introduced in 
a reliable and mathematically exact way. 

To divide a set into classes requires first the choice 
of a criterion according to which this division ought 
to be made. Let us look more closely at the Niggli 
characters from this point of view. 

There is no difficulty in determining the Niggli 
character of a given lattice. We simply take the Niggli 
table (e.g. Migheli et al., 1969; de Wolff, 1983)* and 
compare the parameters of the Niggli cell of the lattice 
with the entries of this table. The table was con- 
structed for the primary purpose of determining the 
Bravais type of a lattice: to every entry of the table 
there belongs exactly one Bravais type. Since there 
are 44 entries and only 14 Bravais types it follows 
that some of the Bravais types must occur in the table 
more than once. Niggli used this opportunity to divide 
the Bravais types into finer classes, now called lattice 
characters (de Wolff, 1983). 

From a pure logical standpoint, there can be no 
objections. To any lattice there is attached a unique 
character (denoted by a positive integer not greater 
than 44) and all lattices of the same character belong 
to the same Bravais type. Also, the practical procedure 
of how to determine the character of a given lattice 
is simple and straightforward. 

Less satisfactory, however, is the question of a 
general definition of the characters. It is clear that 
we would like to know their factual meaning or, in 
other words, what two lattices of the same character 
have in common. 

Here we are on shaky ground. Niggli expresses 
himself in a descriptive rather than a formally 
rigorous way, perhaps because he was preparing an 
extensive account (Niggli, 1928, p. 115) for Z. Kristal- 
logr. which, however, as far as we could discover, did 
not appear. Thus it is sometimes difficult to decide 
absolutely according to the Niggli criterion (Niggli, 
1928, p. 114; de Wolff, 1988) whether two lattices 
have the same character or not. 

The greatest attention was given to this problem 
by P. M. de Wolff who has analysed it very thoroughly 
in several papers (de Wolff, 1983, 1988; de Wolff & 
Gruber, 1991), perhaps from all possible aspects. And 
if he comes to the conclusion (1988) that 'so far there 
does not exist an exact general definition' and that 
'regarded as a concept (rather than a list of explicit 
criteria for each of the 44 characters) the lattice 
character so far has not been defined as clearly as 
the Bravais types and systems', we can only agree 
with him. 

On the other hand, we are bound to say that de 
Wolff (1983, p. 744; 1988) has presented an alternative 
definition based on a lattice deformation which is 

* More detailed references can be found in the following section. 

continuous in the parameters 

A, B, C, 19, E, F.* (1) 

This definition is exact and concise and we shall meet 
it in the final section. It is somewhat surprising that 
he does not put a greater emphasis on it. Perhaps it 
is because the definition seems to him (1988) to 'lack 
a simple interpretation' and not 'to be easily appli- 
cable' which is, of course, correct. He also in no way 
suggests how to verify the equivalence of the two 
definitions. 

With this exception, the present state of affairs may 
leave us with an uncomfortable impression that the 
whole thing is not exactly up to date and deserves, 
perhaps, to be 'modernized'. It is the aim of this paper 
to show that it can be done effectively with basic 
topological concepts. Moreover, this method enables 
a mathematically rigorous treatment of the matter. 

The clue was found in an idea which associates 
any lattice with a point in the five-dimensional 
Euclidean space Es. This can be done in various 
ways.t Here this point is derived from the Niggli cell 
and called therefore the Niggli point of the lattice. 

The idea of applying E5 was suggested by Burzlaff 
& Zimmermann (1985). However, they took advan- 
tage of it only in a limited form using the three- 
dimensional space E 3 for lattices of at least mono- 
clinic symmetry. On the other hand, this restriction 
enabled them to visualize the results directly in 
figures. Also, topological methods are not new in this 
field. They are employed in the paper by Schwarzen- 
berger (1972) and, implicitly, also in that by Burzlaff 
& Zimmermann (1985). 

Here we move freely in five dimensions following 
thus Wondratschek (1986) who is applying this 
method to a similar problem. For our purposes the 
space E5 is very appropriate. Five dimensions are 
enough since we are interested only in the 'shape' of 
the lattice and not in its 'size'. Further, the problem 
becomes 'homogeneous' in all the parameters (1) 
where hitherto the A, B, C were looked upon 
differently from the D, E, F. 

Thus, to any system Ae of lattices there corresponds 
a set of points in E5 called the image of this system. 
Conversely, to any set of Niggli points in E5 there 
belongs a system ~ of lattices. Consequently, any 
division of the system ~ is transferred to E5 as a 
division of its image and any division of this image 

*The current notation A=a.a,  B=b.b, C=c.c, D=b-c, 
E = c.a, F = a. b is used throughout, the vectors a, b, c relating 
usually to the Niggli cell in a normalized description. 

t For example, a referee of this paper has shown a very elegant 
way to use the Delaunay procedure for this purpose. However, 
this would lead us to regions in E 5 which are too far from our 
interest since 'the comparison between the Niggli and the Delaun~y 
classification shows rather low correlation' (Burzlaff & 
Zimmermann, 1985). 



B. G R U B E R  463 

induces a division of the system ~.* We shall use 
both these "directions' but the latter will be of greater 
impor tance  for us since the sets in E5 can be viewed 
from various diverse aspects. 

Raised in this way into f ive-dimensional  space our 
problem suddenly  becomes clear. It turns out that the 
crucial concept relating to the Niggli characters is the 
connectedness.  In particular,  we shall use the fact 
that in a topological space (here in Es) any set can 
be divided in a unique way into so-called components ,  
that is into connected subsets which cannot  be 
enlarged without ceasing to be connected.  

Thus we shall proceed in the fol lowing way: (i) we 
divide all lattices into Bravais types; (ii) we construct 
the images of the Bravais types; (iii) we divide any 
image into components ;  (iv) we transfer these 
divisions back to the Bravais types and (v) we obtain 
- with some surprise - the lattice characters. 

This is the general common  principle we were 
looking for: the images of  the Niggli characters are 
s imply components  of  the images of the Bravais types. 
On the basis of this pr inciple  the Niggli characters 
can be defined in an abstract and mathemat ica l ly  
exact way. 

Whether  Niggli h imse l f  suspected something of  this 
kind cannot  be guessed, but his insight must  be 
admired.  

E x p l i c i t  d e s c r i p t i o n  o f  t h e  N i g g l i  c h a r a c t e r s  

The system of all three-dimensional  lattices is denoted 
~.  We introduce the ' r educed ' t  parameters  

u = a2/c 2, v = b2/c 2, 

x = 2 b "  c/c  2, y = 2 c "  a /c  2, z = 2 a .  h/c 2 

for a cell C:~ described by the vectors a, b, c. These 
vectors can always be chosen in such a way that 

u<_ 1)-< 1, 

if  u = v then [x[ <-lyl, 

i f  v = 1 then lyl-< Izl, 

either x > 0, y > 0, z > 0 (2) 

or x_<0, y-<0,  z-<0. (3) 

In this case we speak about  a normal ized descript ion 

u, v, x, y, z (4) 

of  C. Such a description is unique.  Further, we shall 
use only normal ized descriptions of  cells without 
saying it explicitly. We dist inguish between positive 
and non-posit ive cells according to whether  (2) or 
(3) is true. 

* A more accurate explanation is given in the next section. 
t We use the inverted commas to avoid a confusion of these 

parameters with the current parameters of a reduced cell. 
¢ Only primitive cells are admitted. 

In any lattice there is a unique cell, called the Niggli  
cell, which is convent ional ly  taken for representing 
the lattice. This cell minimizes  the sum a + b + c  
fulfil l ing besides a system of inequali t ies  which 
guarantee its uniqueness  (de Wolff, 1983, § 9.3.2). 
Thus, if  we take for a lattice L its Niggli cell and 
describe it in a normal ized way we get a unique point  

[u,v,x,y,z] (5) 

which is called the Niggli point  of  the lattice L. 
The set of  Niggli points of  all possible lattices is 
d e n o t e d / / .  

Any Niggli point belongs either to the five- 
d imens iona l  polyhedron 

~ + : u < _ v - < l ,  
(6) 

O~x-<v, O<-y-<u, O<-z<-u 

or to the polyhedron 

.(2-: u-<v-<l, O - < u + v + x + y + z ,  
(7) 

-v<-x-<O, -u-<y-<O, -u<-z<-O. 

The relat ionships between these sets are as follows: 

/ - / c  O + w  12- ~ Es, 

/ - /~  I 2 + ~ / / - ,  / /+ c~ 12- ~ Q.  

Two lattices have the same Niggli point  if  and only 
if  they are geometrically similar.  Thus, if  (5) is a 
Niggli point  there exists an infinite number  of  lattices 
for which (5) has this property. Since all these lattices 
are geometrically s imilar  we need not (with regard to 
the aim of  this paper) dis t inguish between them and 
can consider  the just-establ ished correspondence 
between the sets ~ and H as one-to-one. 

We start with the general ly used division of lattices 
into 14 classes called the Bravais types.* For these 
types the symbols 

cP, cl, cF, hP, hR, tP, tI, 

oP, oC, oI, oF, mP, mC, aP 

are used (International Tables for X-ray Crystal- 
lography, 1969). For a general  Bravais type which has 
no other specification, we use the symbol xY. The set 
of  the Niggli points of  all lattices of the Bravais type 
x Y  is denoted {xY} and called the image of  this 
Bravais type. 

The classes of the Niggli division are called char- 
acters. Since any character  is part of  a Bravais type, 
all lattices of  the same character  belong to the same 
Bravais type. Also, the Niggli cells of  lattices of  the 
same character are either all positive or all non- 
positive. Thus we can speak about positive and non- 
positive Niggli characters. 

There are altogether 44 Niggli characters which are 
thus on the average three t imes finer than the Bravais 

* Thus a Bravais type is formally a subset of ~. 
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types. However, the way in which the particular 
Bravais types are divided into characters is not 'uni- 
form' and some of them are not divided at all. 

The Niggli character of a given lattice can be deter- 
C h a r a c t e r  

mined by the Niggli table. This table has been through 
several developments. Paradoxically, Niggli (1928) cF.1 
himself  did not establish a table, he just made a hR.2 

h R . 9  

detailed analysis richly illustrated by a series of tl.18 
figures. Only by means of the numbers ofthese figures oL19 
could the particular characters be referred to. Later, oF.26 
Mighell et al. (1969) arranged the characters into a incA0 
real table, each entry becoming a current number. 

o r  
This number is also used for denoting the character mc2o 
determined by this entry. Some corrections and or 
modifications were incorporated by Mighell & mc.27 
Rodgers (1980). The improved version by de Wolff ,,c.28 
(1983) is graphically simpler but the main improve- mC.29 
ment is in changing the order of the entries whose mc.3o 

a P . 3 1  

numbers, however, remained the same. In this way or 
he obtained a 'first-hir sequence where the first agree- 

o r  ment with the given data determines the correct or 
character. This was not always the case in the previ- or 
ous tables. Finally, in the Appendix of this paper o, 

o r  

there is a modification of the Niggli table for the or 
'reduced' parameters (4). It has a particularly simple or 
appearance. 

From the present notation of a Niggli character by 
a mere integer k (1 -< k <_ 44), the Bravais type of the 
lattice is not apparent unless the Niggli table is at 
hand. This is often inconvenient and therefore we use 
here a more explicit symbol x Y . k  showing both the 
Bravais type x Y and the number k of the character. 
The set of Niggli points of all lattices of the Niggli 
character xY .k  is denoted { x Y . k }  and called the image 
of this character. 

For example, 

ol.8, oi.19, ol.42 

are all Niggli characters which contain lattices of the 
Bravais type oi. Thus, 

{ o l }  = {0/.8} w {oi.19} w {ol.42}, 

{oL8} n {oL19} = {oL8} n {oL42} 

= {o l .19}  n {o l .42}  = f~. 

The two divisions of lattices which we have just 
described generate two divisions of the set/7, namely 
the images of the Bravais types and the images of the 
Niggli characters, the latter being a subdivision of 
the former. What do these images look like? 

Viewing E5 as a Euclidean space and using the 
possibilities which this concept offers, we soon 
observe (see Table 1) that the 'geometrical' shape of 
the images { x Y . k }  and their mutual relationships are 
fairly complicated. These sets are composed of certain 
parts of various-dimensional 'faces'* of the polyhedra 

* Added must be the interiors of/2 + and/2-. 

Table 1. Explicit descriptions o f  the Niggl i  characters 

( a )  P o s i t i v e  N i g g l i  c h a r a c t e r s  

u v 0 x 0 y 

v I x 

: = 

= = < 

= < < 

<_ _- < 

< = 

_<. < < 

: < < 

= = < 

< = < 

= : < 

.<_ < 

_< < 

< < 

< < < 

< < 

< _< 

< = < 

< = 

<_ < 

= < < 

= < 

= = < 

v y 

= 

< 

= 

_< < 

< < 

< = 

= 

< < 

< < 

_<. 

< < 

< 

0 z 

C o n d i t i o n  
u z u 

x = y : z  

= 

= = y = 2 x  

= = y < 2 x ,  

x + y < 2  
= = y = 2 x  

< -<. x = y ,  

y+z<2u  
<_ x = y < z  

y = z  

< x < y = z  

= y < 2 x ,  

x + y < 2 v  

< < Z = 2 X  

= y = 2 x  

< -< z = 2 y  

< < 

< -<- z < 2 y ,  

y + z < 2 u  

= y < 2 x  

< y < z  
<- y < z < 2 y  

= < < z < 2 x  

< < < x < y  

< = x < y < 2 x  

< x < y < z  

( b )  N o n - p o s i t i v e  N i g g l i  c h a r a c t e r s  

N o t a t i o n :  s = u + v + x + y + z  

u v - v  x -u  y -u  

C h a r a c t e r  . . . . . . .  
v 1 x 0 )' 0 z 

c P . 3  . . . .  
c L 5  = = 

h P . 1 2  = -<- = = = 

h P . 2 2  < = = < = 

h R . 4  = = < 

h R . 2 4  < = < 

t P . 1 1  = < < = = 

t P . 2 1  < = = < = 

t l . 6  = = < 

t L 7  = = < 

t L 1 5  = < = < = 

o P . 3 2  < < = < = 

o C . 1 3  = <- = = < 

o C . 2 3  < = < < < = 

o C . 3 6  <- < = = < 

o C . 3 8  < <- = < = = 

o C . 4 0  < < = < = 

o L 8  = = < 

o i . 4 2  < < = = < 

oF.16 = < < 
r a P . 3 3  <- < = < < 

r a P . 3 4  < -<- = = < 

r a P . 3 5  < < < < < = 

i n C . 1 4  = < < < 

or = = < < 
m C . 1 7  = < < < 

m C . 2 5  < = < <- < < 

O r  < = < 

or  = = < 

m C . 3 7  <- < < < = < 

m C . 3 9  < <- < < < = = 

i n C . 4 1  < < = < < 

m C . 4 3  < < < 

or  < = < 

z 0 

- C o n d i t i o n  
0 s 

= 

= 2 = ) , = X  

< 

= 

< z = y = X  

= z = y ,  

u + y = l ) + X  

= 

= z < y = x  

= z = y < x  

= 

= 

< 

= 

= 

: z < y < x  
= 

< = y = X  

< 

<_ < y = x  
< z < y = x  

= y < x  

< z = y  

= z = y ,  

u + y < v + x  

< l = y < x  

= 

= 

< = u + y = F + X  

= 7. < y ,  

u 4 - y = v + X  
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Table 1 (b) (cont.) 
u v - u  x - u  y - u  z o 

C h a r a c t e r  . . . . .  C o n d i t i o n  
v 1 x 0 y 0 z 0 s 

a P . 4 4  < < < < < < < < < 

o r  < < < < < < = 

o r  < < < < = u + y < v + x  
o r  < ~ < < = < < 

o r  < : < < < < < z<y  
o r  < = < = z<y ,  

u + y < v + x  
o r  --< < = < < < < 

o r  <- = = < < 2<y 
o r  = < < < < < < y < x  

o r  = < < < = y < x  

o r  = = < < < 7 .<y<x  

J2* and O-  and are quite irregularly distributed along 
the boundary of these polyhedra. From this point of 
view the sets {xY.k} are not the object of our interest 
here. 

However, by considering E5 merely a metric or 
topological space, we get a different impression. It 
turns out that the sets {xY.k} and especially their 
systems 

{xY.k}, {xY.l},... ., {xY.s} (8) 

which constitute the complete image {xY} possess 
very expressive topological properties which charac- 
terize them in such a strong way that they can be 
used for a definition of the system (8), a definition 
which is based solely on the set {xY} and not on the 
Niggli characters 

xY.k, xY . l , . . . , xEs .  

This has profound consequences. It enables one to 
introduce the Niggli characters independently of the 
Niggli table by using only the topological properties 
of the sets {xY}. In this way, the Niggli characters 
will gain an exact abstract meaning. 

To prove (and formulate properly) all these state- 
ments is our next task. To fulfil it we must first have 
an exact knowledge of the images {xY.k} of all 44 
Niggli characters. This knowledge may be gained 
from Table 1 which gives an explicit description of 
these sets. 

Table 1 (a) relates to the positive characters, Table 
l(b) to the non-positive. In the first column are given 
the symbols xY.k of the lattice characters (although, 
actually, their images are concerned). In both tables 
the lattice characters are grouped according to the 
corresponding Bravais types. The concise form of the 
tables is enabled by the inequalities (6) and (7). 
Special conditions, if necessary, are added in the last 
column. The blank spaces are ignored.* Any entry 
may be directly checked by the Niggli table. Not so 
straightforward is the question of the completeness 

* In any of these spaces, =, < or <- may be placed which, 
h o w e v e r ,  i s  s u p e r f l u o u s  f o r  t h e  d e s c r i p t i o n  o f  t h e  s e t  {xY.k}. 

of Table 1. This requires the knowledge of the fairly 
complicated shape of the se t /7  (Gruber, 1978). 

Example: According to Table l (a)  the image 
{inC.20} of the Niggli character inC.20 is the set of 
points (5) fulfilling either 0 < x-< 1, 0 < y = z < u < 
v = l  o r O < x < y = z < u = v = l .  

Before stating our main results we shall insert a 
brief summary of the concepts and statements from 
topology which will be needed. 

Auxiliary concepts and statements from topology 
Here we move in the space Er (r-> 1) which is pro- 
vided with the Euclidean metric p. Since the whole 
section is meant to be a summary of the basic topo- 
logical knowledge, the statements (with one exception 
which is formulated specially for our purposes) are 
given without proofs. 

The points of Er are usually denoted X, Y , . . . ,  the 
subsets M, N , . . . .  The distance p(X, M) of a point 
X from a set M is the infimum of the numbers p(X, Y) 
where Y ~ M. If X ~ M then obviously 

p(X, M) =0. (9) 

However, (9) may be true also for a point X which 
does not belongto M. The set of points X fulfilling 
(9) is denoted M and called the closure of the set 
M. It fulfils 

M L) N = 1(/1 L) 1~. (10) 

We say that the sets M, N are separated if any point 
of M has a positive distance from N and any point 
of N a positive distance from M. In a more formal 
way, M and N are separated if 

M ~  lq = N ~ ?~,l = Q. 

Two separated sets are disjoint but two disjoint sets 
need not be separated. 

(Example. In El let n~ ,  n 2 ,  NI, N2 be the sets of 
real numbers x fulfilling x < 0 ,  x<-0, 0 < x ,  0<-x, 
respectively. Then 

M,,  N, are disjoint and separated, 

Mi,  } N2 
are disjoint and not separated, 

M2, NI 

M2, N2 are not disjoint and not separated.) 

A non-empty set M is called connected if it cannot 
be considered a union of two non-empty separated 
sets. (Example: In El the set of all real numbers x 
fulfilling 0 < Ix[ ' is not connected.) 

The union of two connected sets which have a 
common point is connected. Any linear interval is 
a connected set. If f is a continuous mapping 
of a connected set Q c  Eq (q>-1) into E~ then f (Q)  
is connected. If in particular the set Q is a closed 
linear interval, the set f (Q)  is called a path. Thus a 
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path is a connected set. We say that the points X, Y 
are connected by the path P if  X, Y ~ P. 

A set M may have various connected subsets. 
Among  them those which are "maximum'  sets with 
this property are of  special importance.  They are 
called components  of  the set M. More precisely, we 
say that C is a componen t  of  the set M = Q  if 
(i) C c  M, (ii) C is connected,  (iii) i f C c  N c  M , C ¢  N 
then N is not connected. 

Any point  X of a set M belongs to a component  
of  M. This component  is the union of all connected 
subsets of  M which contain X. If C~, C2 are com- 
ponents of  M then they are either identical  or sepa- 
rated (and therefore disjoint).  This means  that the 
system c¢ of  all components  of  M stands for a 
decomposi t ion  of the set M into connected classes 
such that any two of  them are separated. This state- 
ment,  which is not difficult to prove, can be to a 
certain extent inverted. This inversion has a crucial 
mean ing  for our reasonings.  

Proposition 1. Let 

M ~ , . . . , M s  (s >-1) ( l l )  

be a decomposi t ion of  a set M (M ~ Q )  into a finite 
number  of  classes.* Let any class M~ (1 <-i<_ s) be 
connected and any two classes M~, Mj (1 < - i < j < - s )  
separated.  Then (11) stands for the system of  all 
components  of  the set M. 

Proof of proposit ion 1. The matter is clear for s = 1. 
Let s > 1. Denote by ~t the system (1 l)  and by cg the 
system of  all components  of  M. t  We want to prove 

~ - - c C  (12) 

Two lemmas  will help us to do this. 
Lemma 1. For any C ~ c~ there exists such Mq E ./~ 

that C c Mq. 

Proof of l emma 1. Suppose the opposite is true so 
that such points X, Y ~ C  exist which belong to 
different classes of M. Without  loss of  generali ty we 
may assume X ~ M~. Then Y ~ M'  where 

M ' = M 2 u . . . w M s .  

Any point  of  M~ has a positive distance from any of  
the sets 

M 2 , . . . ,  Ms (13) 

and thus also a positive distance from M'. On the 
other hand,  any point of  M'  has [as a point of  one 
of  the sets (13)] a positive distance from M~. This 
means  that M~, M'  are separated.  Then also the sets 

M~ c~C, M'c~C 

are separated. They are not empty (the first containing 

* That is, (i) M, ~ Q for 1 <- i -< s, (ii) Mi c~ Mj = Q for 1 -< i < 
j<-s, (iii) M i u . . . u M s = M .  

¢ The system ~t consists of s elements whereas the number of 
elements of ~ is not known, or even whether it is finite or infinite. 

the point  X and the second the point  Y) and their 
union is the set C. This, however,  does not agree with 
the fact that C as a component  is connected. 

Lemma 2. If Mp E J~, C E c~, Mp ('~ C ¢ ~ then 
Mp = C. 

Proof of  l emma 2. Let X be a common point  of  
Mp and C. Since C is the union of  all connected 
subsets of  M containing the point  X, Mp c C. Accord- 
ing to l emma 1 such M q ~ t  may be found that 
C c Mq. Thus, Mp c Mq. But M , ,  Mq are classes of 
a decomposi t ion of M. Consequent ly ,  M e = Mq and 
Mp = C. 

Now let us return to the proof  of proposi t ion 1. 
Let Mp be an arbitrary element  of  ~ .  The set Mp 

being not empty contains a point  X and this point  
X belongs to a component  C. According to l emma 
2, Mp = C so that Mp ~ ~ and , / / ~  ~. Secondly,  let 
C~ ~ be an arbitrary component .  It is not empty 
containing a point Y. Since Y belongs to M it must 
belong to one class, say Mp, of  the system ~ .  Applying 
lemma 2 again we get C = M p  so that C~At  and 
c¢ c ~ .  In this way, (12) is proved and the proof  of  
proposi t ion 1 completed.  

Remark 1. Let us ment ion here the (otherwise 
obvious but for us vital) fact that the system of  all 
components  of  a set M is by its definit ion unique and 
is fully determined only by the set M itself. 

Finally,  we introduce two concepts which relate to 
E~ as a Eucl idean (not only a metric or topological) 
space. If  X, Y are arbitrary points of  E r then the set 
of  points 

A X + ( 1 - A ) Y  (0<_A_<I) 

is denoted X Y  and called a straight segment with the 
end-points  X, Y. A straight segment is a path and 
therefore connected. 

A set M c Er is called convex if  from X, Y ~ M it 
follows that X Y  c M. The intersection of  convex sets 
is convex. If f is a l inear  mapp ing  of a convex set 
Q c  Eq (q>- 1) into Er then f ( Q )  is a convex set. The 
relat ionship between connectedness  and convexity is 
simple. 

Proposition 2. Any non-empty  convex set is con- 
nected. 

Topological properties of the sets {xY.k} 
Proposition 3. For any Niggli character  xY.k the 

set {xY.k} is convex. 
Proof. Two cases will show how to proceed. First 

let us take the set {oF.16). According to Table l (b )  
it can be considered a set of  points 

[u , v , x , y , z ]=[q ,q , -p , -p , -2q+2p]  (14) 

where 

q / 2 < p <  q <  1. (15) 

The two-dimensional  set defined in (15) is convex 
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Table 2. Relating to the proof of proposition 3 
u i t~ 0 X i 0 y~ 0 z 

E n t r y  P o i n t  C o n d i t i o n  
u, I x i v i y, u, z, u I 

1 W~ < = < = < < < <- Yt < zl < 2y t  
2 W 2  = -<- < < < < < = x2  < Y2 < 2 x 2  

l a  W t  < = < = < < < = y~ < 2 x ~  

2 a  W2 = <- < < < < < = Y2 < 2x2  

3 a  W~ < ~ < < < < < = Y3 < 2 x 3  

1 b W~ < = < = < < < < ) ' l  < z~ 

2 b 14/2 = = < < < < < = Y2 < z2 

3 b  W3 < = < < < < < < Y3 < z3 

I c W 1 < = < = < < < < 

2c  W2 = < < < < < < = 
3c  w 3 < < < < < < < < 

and the mapping (14) (from E 2 into Es) is linear. 
Thus, {oF.16} is convex. 

Secondly, we consider {aP.31}. This is described 
in Table l ( a )  on nine lines each line giving a subset 
of  {aP.31}. Denote these subsets (in the given order) 

{aP.31},,..., {aP.31}9 

so that 

{aP.31}={aP.31}]w...u {aP.31}9 (16) 

and choose two arbitrary points W,, W2~{aP.31}. 
Our task is to prove that the straight segment W1 W2 
belongs to {aP.31}. The matter is clear for WI = W2. 
Otherwise, we have to prove that for any A fulfilling 

0 < A < I  (17) 

the point 

W3 = A W, + (1-  A ) W2 

belongs to {aP.31}. Further, let a A fulfilling (17) be 
chosen. We denote 

W~ = [u,, v,, x,, y,, z,] (i = 1, 2, 3) 

so that 

/~3 = A U l  + (1 - h)u2, • •, 

z3 = az~ + (1 - A)z2. 

The union in (16) shows that there are 9 x 9 = 8 1  
possibilities for the positions of the points IV], W2. 
As an example we take 

W~ ~ {aP.31}5, W2 ~ {aP.31}s 

and consider Table 2. The first two entries repeat the 
inequalities for {aP.31}5 and {aP.31}8 from Table l ( a )  
with completed blank spaces. Further, we distinguish 
three cases: (a) zl = ul,  (b) z, < u,,  v2 = 1, (c) z, < u,,  
v2< 1. The corresponding inequalities are given in 
the entries la, 2a, lb, 2b, lc, 2c, where in the last 
column only those inequalities are given which will 
be needed. In particular, let us mention that, in entry 
la,  y] < z] = u~ < v~ = x~ <2x~ and, in 2b, y2< u2= z2. 
Now let us take case (a) ,  first column. From ul < vl, 
u2 = v2 it follows that 

a U l  + ( 1  - -  A ) U 2  < A V l  + ( 1  - -  a ) t ~ 2 ,  

that is u3 < v3 as stated in entry 3a. In this way Table 
2 can be verified almost at first sight. Consulting 
finally Table l (a )  again, we find that in case (a) 
Q3~{aP.31}3, in case (b) Q3~{aP.31}4 and in case 
(c) Q3 ~ {aP.31}~, which is Q 3  c {aP.31} which was to 
be proved. These two examples suffice to show how 
to complete the proof of proposition 3. 

Proposition 4. For any Niggli character xY.k the 
set {xY.k} is connected. 

Proof follows from propositions 3 and 2. 
Proposition 5. Let x Y.k, xY.l be two different Niggli 

characters belonging to the same Bravais type xY. 
Then the sets {xY.k}, {xY.l} are separated. 

Proof The idea will be seen from the following 
example concerning the characters mC.lO and inC.20. 
Here we have to prove 

{mC.10} n {mC.20} = O,  
(18) 

{me.20} n {inC.10} = O.  

Following Table l (a ) ,  we write in a notation used in 
the proof  of proposition 3 

{inC.10} = {inC.10}, w {inC.10}2, 

{ inc.20} = { inC.20}, u { mC.20}2. 

Then [with respect to (10)] the relations (18) are 
equivalent to 

{mC.10}i n {mC.20}j = O 
(1 <- i<-2, 1 <-j <- 2). 

{mC.20}i n {mC.10}j = O 

We take the case i=j  = 2. According to Table l ( a )  
we can describe these sets of points as 

{rnC.lO}2:[1,1,p,p,q], 0 < p < q < _ l ,  

{mC.20}2:[1,1,p,q,q], 0 < p < q < l .  

The closures can be easily provided: 

{mC.lO}z:[1,1,p',p',q'], O<_p'_<_q'<_l, 

{mC.20}2:[1,1,p',q',q'], O<_p'<_q'<_l. 

A point belonging simultaneously to {mC.lO}2 and 
{mC.20}2 must therefore fulfil 

[1 ,1 ,p ,p ,q]=[l , l ,p ' ,q ' ,q ' ]  

with 

0 < p < q _ < l ,  O<_p'<_q'<_l. 

Such numbers p, q, p', q', however, do not exist and 
therefore 

{rnC.lO}2n {mC.20}2= 0 .  (19) 

In a similar way, 

{mC.20}2n {mC.lO}2= 0 .  (20) 

Let us, perhaps, note that the intersection 

{ mC. 10}2 n { mC.20}2 

is not empty [which would immediately give both 
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(19) and (20)] being equal to the set of points 

[1,1, p, p, p], O<-p-<l. 

We can proceed like this without difficulties until the 
proof is completed. 

Proposition 6. Let 

xKk, x K ~ . . . , x E s  

all be Niggli characters belonging to the Bravais type 
x Y. Then the system 

{xY.k},{xY.l}, . . . ,{xY.s} 

stands for a decomposition of the set {xY} into com- 
ponents. 

Proof follows from propositions 4, 5 and 1. 
Having in mind remark 1 we can now state the 

fundamental 
Theorem 1. Let L~, L 2 be arbitrary lattices of the 

same Bravais type, say xY. Then they are of the same 
Niggli character if and only if their Niggli points 
belong to the same component of the set {xY}. 

Geometrical view 

Here we make use of proposition 3 which has not yet 
been exploited. 

Theorem 2. Let L~, L2 be arbitrary lattices. Then 
they are of the same Niggli character if and only if 
there exists a path connecting the Niggli point of LI 
with the Niggli point of L 2 such that all points of this 
path are Niggli points of lattices of the same Bravais 
type. 

The condition of this theorem can be made nar- 
rower. 

Theorem 3. Let L~, L 2 be arbitrary lattices and 
WI, W2 their Niggli points. Then these lattices are of 
the same Niggli character if and only if all points of 
the straight segment W~ W2 are Niggli points of lat- 
tices of the same Bravais type. 

Proqfs of these two theorems will be performed 
simultaneously. 

(i) Let L~, L2 be of the same Niggli character, say 
xY.k. Then W~, WzE {xY.k}. According to proposi- 
tion 3 the set {xY.k} is convex so that W~ W2c {xY.k}. 
Then also W~ W2c {xY} which was to be proved in 
theorem 3. As far as theorem 2 is concerned it is 
sufficient to realize that WI W2 is a path connecting 
the Niggli points of L1, L2. 

(ii) Let the Niggli points W~, I4/2 of L~, L2 be 
connected by a path P (which may be, in particular, 
the straight segment Wi W2) such that all points of P 
are Niggli points of lattices of the same Bravais type, 
say xY. The P c { x Y }  and W~, W 2 c { x Y  }. In par- 
ticular, 

W, 6{xY.k}, W2e{xY.l} 

for some integers k, L Any of the sets 

{xY.k}, P, {xY.l} 

is connected. The first two have a common point as 
well as the last two. Thus the union 

{xY.k} w Pw {xY.I} 

is connected and is a part of {xY}. Therefore it must 
be a part of a component C of {xY}. Then also 

{xY.kIcC,  {xY.l}cC. 

But {xY.k}, {xY.l} are components of {xY} them- 
selves. This is possible only if 

{xY.k}=C={xY.l} 

and this means that L,, L 2 a r e  of the same Niggli 
character. 

Definitions 

The necessary and sufficient conditions in theorems 
1, 2, 3 enable one to formulate three equivalent 
definitions of the Niggli characters. The geometrical 
form of theorems 2 and 3 is replaced by a 'dynamical' 
version which may be, perhaps, preferred by the 
physicists. 

Definition 1. Let LI, L2 be arbitrary lattices of the 
same Bravais type, say x Y. We say that they are of 
the same Niggli character if their Niggli points belong 
to the same component of the set {xY}. 

Definition 2 (de Wolff, 1983).* Let L~, L2 be 
arbitrary lattices. We say that they are of the same 
Niggli character if one of them can be deformed into 
the other in such a way that the Niggli point of the 
deformed lattice moves continuously from the initial 
to the final position while the Bravais type of the 
lattice remains unchanged. 

Definition 3. In definition 2 replace the single word 
continuously by the word linearly. 

Remark 2. The continuous motion of the Niggli 
point in definition 2 means a continuous deformation 
of the lattice.? On the other hand, not every con- 
tinuous deformation of a lattice results in a con- 
tinuous motion of its Niggli point. The Niggli cell 
namely can - as a mere abstract notion - 'jump' 
discontinuously from one cell of the lattice to another. 
Thus, the continuous deformation of a lattice is a 
more general condition than the continuous change 
of the parameters of the Niggli cell. This condition 
may be used for defining new 'characters' (Wondrat- 
schek, 1986) which are more general than the Niggli 
characters and, moreover, do not depend on the (more 
or less ad hoc) choice of the Niggli cell. This concept, 
however, has not been studied in this paper. 

Remark 3. The linear movement of the Niggli point 
in definition 3 need not mean a linear change of the 
parameters a, b, c of the Niggli cell. 

* To get a strict equivalence between definition 2 and de Woiff's 
alternative definition (de Wolff, 1983, 1988) we have to add in 
definition 2 the assumption that the parameter C changes con- 
tinuously during the deformation. 

t If also the parameter C changes continuously. 
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R e m a r k  4. All definitions justify the cell-type 
criterion emphasized by de Wolff (1988). 

R e m a r k  5. The Niggli cell, though generally used, 
is not the only reduced cell which can characterize 
the lattice in a unique way. At least four  such cells 
can be introduced in a sensible way (Gruber ,  1989). 
The Niggli cell is only one of  them and does not differ 
in principle from the others. This means a serious 
limitation in the generali ty of  the Niggli characters.  
We cannot  consider  them as such a fundamenta l  
concept  as, for example,  the Bravais types. On the 
other  hand,  the method worked up in this paper  for 
the Niggli cells can be appl ied also to other  reduced 
cells. Only the Niggli points will be replaced by 
another  kind of  representat ive point  (e.g. those which 
belong to the cells fulfilling a + b + c = abs min, sur- 
face = rel min). Instead of  the sets { x Y }  we shall now 
get some other sets which may be denoted,  say, [ x Y ] .  
Then definition 1 in a proper  modification will create 
new kinds of  'characters ' .  Whether  also definitions 2 
and 3 will have their analogies depends  on the shape 
of  the sets [ x Y ] .  The details, however,  are not investi- 
gated here. 

Concluding remarks 

Any of  the three definitions 1, 2, 3 is equivalent  to 
the hitherto used procedure  based on the Niggli table 
and determines the same classes of  lattices of  the 
same Niggli character.* In this way, perhaps ,  the 
Niggli characters  are defined as clearly as the Bravais 
types and systems. 

The author  thanks Professor  P. M. de Wolff (Delft)  
for many  years of  cor respondence  on Niggli char- 
acters and Professor H. Wondra t schek  (Kar ls ruhe)  
for inspiring discussions. His thanks are also due to 
a referee for calling his at tention to some papers  on 
this subject. 

Table 3. Niggl i  table 

(a) For the positive Niggli characters 
u v x y z C h a r a c t e r  

1 i 1 i 1 cF.I 
1 1 x x hR.2 

u u u u hR.9 

u x mC. lO 

2x  i u u tl.18 
1 u u o!.19 

l y inC.20 

2x  u u oF.26 
u u mC.27 

u 2x  mC.28 

2x  u mC.29 

v 2y  mC.30 

aP.31 

( b )  F o r  t h e  n o n - p o s i t i v e  N i g g l i  c h a r a c t e r s  

N o t a t i o n :  s = u + v + x + y + z ,  w = 2 u + 2 y + z  

v x y z s w Character 
1 0 0 0 cP3 
i x x 0 cl.5 
1 x x hR.4 
1 x 0 tl.6 
I y 0 tl.7 

1 0 ol.8 

u 0 0 0 tP.i 1 

u 0 0 - u  hP.12 

u 0 0 o6".13 
u - u  - u  0 t L l 5  

u x 0 oF.16 
u x inC.14 
u 0 inC.17 

1 0 0 0 tP.21 

i - I 0 9 h P 2 2  

1 0 0 0(?.23 
1 y 0 0 hR.24 

i y mC.25 
0 0 0 oP.32 

- v 0 0 0( ' .40 
0 0 raP.35 

0 - u  0 oC.36 

0 0 raP.33 

0 0 - u oC.38 
0 0 mP.34 

- v - u 0 oi.42 

- v  0 mC.41 

- u  0 mC.37 

0 - u  mC.39 
0 0 mC.43 

aP.44 

A P P E N D I X  

The Niggli table 

The Niggli table is presented here in a modification 
for the ' reduced '  parameters  (Table 3). The given da ta  
[i.e. the normalized ' reduced '  parameters  (4) of  the 
lattice] are compared  with the entries in the order  in 
which the entries appear  in the table. The blank spaces 
are ignored (i.e. from the pa ramete r  in question noth- 
ing is required).  The first agreement  determines the 
Nigglie character.  For example,  the lattice with 
(u, v , x , y , z ) = ( ½ , ½ , ~ , ~ , ½ )  is of  the Niggli character  
mC.29 .  

* The conventional notation of the particular characters must 
be, of course, added. 
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Abstract 

A modification of Beenker's pattern is considered that 
is generated by the transformation matrix obtained 
by applying the rotation matrix to that for Beenker's 
pattern. The symmetry of the modified pattern is 
discussed based on the transformation matrix. It is 
well known that Beenker's pattern, a two-dimensional 
eightfold quasiperiodic pattern, is characterized by 
the transformation matrix, the column vectors of 
which are the projected basis vectors in four- 
dimensional cubic lattice space. 

1. Introduction 

The theory of quasiperiodic patterns has been exten- 
sively studied in connection with the modeling of 
quasicrystals (Bak & Goldman, 1988). Among many 
methods of generating quasiperiodic patterns, the 
projection method is a standard and widely used 
method (Bak & Goldman, 1988). In this paper a 
two-dimensional eightfold symmetric quasiperiodic 
pattern or tiling called Beenker's pattern is reviewed 
first. It is generated by the projection method from 
the four-dimensional cubic lattice to the two- 
dimensional pattern space so as to have eightfold 
symmetry. Then, the modification of this pattern is 
considered by introducing an orthogonal transforma- 
tion matrix based on the rotation in four-dimensional 
space. The rotation of the transformation matrix 
defining the pattern and test spaces (see § 2) has been 
considered by Kramer (1987) in connection with 
icosahedral and cubic symmetries. The phason strain, 
another kind of modification or deformation, with 
respect to Beenker's pattern is treated by Wang & 
Kuo (1988) and Socolar (1989). 

2. A two-dimensional eightfold symmetric 
quasiperiodic pattern 

It is known that a two-dimensional eightfold sym- 
metric quasiperiodic pattern, Beenker's pattern 

0108-7673/92/040470-06506.00 

(Beenker, 1982) is characterized by the orthogonal 
transformation matrix A (Wang & Kuo, 1988; 
Socolar, 1989; Soma, Watanabe & Ito, 1990), 

i 1/~/,2 0 -1 /x /2~  
1 1/v~ 1 1 /v~ |  

A = --~ -1 /  x/~ 0 l/x~2 I" 

1 /~  -1 1 / ~ /  

(1) 

The column vectors correspond to basis vectors of 
the original axes (xi) with respect to the transformed 
axes (x~). Since the upper and the lower two rows 
correspond to the pattern (parallel) and the test (per- 
pendicular) space, respectively (Soma, Watanabe 
& Ito, 1990), the upper and lower two-dimensional 
column vectors al I and a~ (i , j  = 1, 2, 3, 4) represent 
the projected basis vectors in their respective spaces 
as shown in Fig. 1. It is known that the pattern consists 
of a square and a rhombus of equal-length sides, as 
shown in Fig. 2. The pattern is thought of as a mixture 
of two square lattices rotated relative to each other 
by I7-/4. It is easy to see that the matrix A is generated 
by the product of four simple rotation matrices in 
four-dimensional space, 

A =  R13(0/13)R24(0/24)R34(a34)R23(0/23), (2) 

with 0/13 = -zr /4 ,  0/24 = rr/4, 0/34 = Ir/4 and 0/23 = zr/2, 
where Ro(%) is the matrix representing a simple 
rotation in the xixj plane by an angle 0/ij from the 
axis xi toward the xj axis, such as sin, ,2 o!) 

l - s in0 / ,2  cos 0/12 0 
R12(0/12) 

100  0 , 
o 

0 0 

(3) 

As is discussed by Wang & Kuo (1988), the pattern 
generated by the transformation matrix A has sym- 
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